
Volume 0 (1981), Number 0 pp. 1–13 COMPUTER GRAPHICS forum

Just-in-Time Texture Synthesis

Lili Wang 1,Yulong Shi1,Yi Chen1 and Voicu Popescu 2

1State Key Laboratory of Virtual Reality Technology and Systems,
School of Computer Science and Engineering, Beihang University, Beijing China

wanglily@buaa.edu.cn
2Computer Science, Purdue University, West Lafayette, Indiana, USA

popescu@purdue.edu

Abstract
Texture bombing is a texture synthesis approach that saves memory by stopping short of assembling the output
texture from the arrangement of input texture patches; instead, the arrangement is used directly at run time to
texture surfaces. However, several problems remain in need of better solutions. One problem is improving texture
diversification. A second problem is that mipmapping cannot be used since texel data is not stored explicitly. The
lack of an appropriate level-of-detail (LoD) scheme results in severe minification artifacts. We present a just-in-
time texturing method that addresses these two problems. Texture diversification is achieved by modeling a texture
patch as an umbrella, a versatile hybrid 3-D geometry and texture structure with parameterized appearance. The
LoD is adapted continuously with a hierarchical algorithm that acts directly on the arrangement map. Results show
that our method can model and render the diversity present in nature with only small texture memory requirements.

Keywords: texture synthesis, texture bombing, diversification

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism-Texture—Color, shading, shadowing, and texture

1. Introduction

Texture mapping is a uniquely powerful method for en-
hancing surface appearance in interactive computer graph-
ics. Texture synthesis research efforts have produced tech-
niques that construct high resolution textures based on input
texture patches and patterns. Unfortunately, the high reso-
lution synthesized texture requires large amounts of texture
memory. Texture bombing addresses this challenge by stop-
ping short of assembling the high-resolution texture from the
arrangement of patches; instead, the arrangement is used di-
rectly at run time to texture surfaces. The texture is synthe-
sized just in time and is never stored explicitly, which brings
considerable texture memory savings.

However, several problems related to texture bombing re-
main in need of better solutions. One is improving texture di-
versification. Given a small number of input patches, a plau-
sible large texture can only be synthesized if the appearance
of the input patches is modulated sufficiently to reflect the
diversity present in nature. Moreover, the diversification has

to be achieved at run time, during the actual texture mapping.
A second problem is that mipmapping cannot be used since
texel data is not stored explicitly. The lack of an appropriate
level-of-detail (LoD) scheme results in severe minification
artifacts.

In this paper we present a just-in-time texture synthesis
method that addresses these two problems (please also see
the accompanying video). Texture diversification is achieved
by modeling a texture patch as an umbrella, a versatile hy-
brid 3-D geometry and texture structure with parameterized
appearance. The input patch umbrellas are modified and ar-
ranged to synthesize a large, high-resolution, and diverse
texture. The input patch is modified substantially by inter-
polation to new colors and 2-D and 3-D shapes. In Figure 1
the 4 base umbrellas are sufficient to create hundreds of
unique modified umbrellas (left), so the synthesized texture
(middle) does not suffer from repetitiveness, which would
be readily noticeable if the texture were synthesized only
from the 4 base umbrellas (right). In Figure 3 umbrellas are
mapped to ellipsoids of various curvature which implements

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Lili Wang et al. / Just-in-Time Texture Synthesis

Figure 1: Just-in-time texture synthesis (left, 9MB) and conventional texture of equivalent resolution (right, 190MB).

Figure 2: Just-in-time texture synthesis (top, 9MB) and con-
ventional texture of equivalent resolution (bottom, 190MB).

3-D shape diversification and adds 3-D detail to the synthe-
sized texture.

For the second problem we propose a hierarchical LoD
algorithm for just-in-time texturing that acts directly on the
arrangement map. Lower LoD arrangement maps are com-
puted off-line by merging umbrellas and are used at run-
time to avoid minification artifacts. A trilinear color inter-
polation or a geometric morph between consecutive LoDs
allows transitioning between LoDs continuously, with good
texture stability and clarity. The result is quality similar to
that of conventional mipmapping at a fraction of the stor-
age cost (Figure 2). Moreover, our LoD algorithm switches
gradually from 3-D to 2-D to only render costly 3-D detail
where needed. To the best of our knowledge, our method is
the first to provide a seamless transition between 3-D and
2-D surface detail.

Figure 3: 3-D shape diversification (top) and comparison be-
tween texture with and without 3-D detail (bottom).

2. Related Work

A variety of texture synthesis methods have been developed
[WLKT09]. Methods can be classified according to the pe-
riodicity of the data of the generated texture, which can be
regular, such as a brick wall, irregular, such as fallen leaves
on the ground, or purely stochastic, such as a rough surface.
Regular textures have been modeled procedurally [LP00].
Other methods separate the sample texture into a regular and
an irregular component, e.g. by using fractional Fourier anal-
ysis [NMMK05], which are then modeled independently, di-
versified and combined during texture synthesis [LTcL05].
We target the synthesis of irregular textures.

Texture synthesis methods can also be classified as pro-
cedural or sample-based methods. Procedural methods use
for example turbulence or Perlin noise functions to gen-
erate textures that have repetitive patterns or self similari-
ties [Pea85,Per85]. Sample-based methods, like ours, assem-
ble the texture from modified versions of the input patches.
A sample-based texture synthesis method needs to address
three tasks.

The first task is to extract texture patches from input im-
ages, which can be either done manually, or automatically,
through random selection of a rectangular window [LLX∗01,
KSE∗03] or with the help of image processing techniques
[DMLG02, ZZV∗03, WY04, LH06]. The second task is to
arrange the extracted texture patches in the output texture

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

Figure 4: Overview of the just-in-time texture synthesis pipeline.

domain. Some textures require an overlapping arrangement,
which can be achieved by random placement of patches
while controlling patch density [DMLG02,HQXT05]. Other
textures require a seamless tiling of patches, achieved us-
ing graph cuts [KSE∗03, EF01], patch stitching [DLC05],
wang tiles [CSHD03], or sparse linear system optimiza-
tion [PFH00]. For example, wang tiles use square patches
whose edges are labeled with colors. A valid tiling re-
quires all edges shared between two tiles to have the same
color and it is computed with a stochastic algorithm that
tiles a plane non-periodically with a small set of wang tiles
[CSHD03]. The arrangement of the patches is either learned
from an example [IMIM08, MWT11], random [CSHD03,
KCoDL06, TW08], or defined with the help of user input
[LN03]. The third task is to diversify the input patches. Di-
versification methods rely on many-knot spline interpola-
tion [HQXT05], on regular lattice combined with deforma-
tion fields [LLH04], on texture meshes inspired from image
meshes [DZ06], or on multi-scale descriptors which allow
for appearance-space jitter that retains the structure on the
input texture patches [RHDG10].

Our method relies on prior work solutions for the first
and second tasks, i.e. patch extraction and patch arrange-
ment, and contributes a powerful approach for the third
task, patch diversification. In the examples shown in the pa-
per patch extraction is performed manually and the patches
are automatically arranged randomly, with uniform density,
and in overlapping fashion. However, our method could be
used with any patch arrangement method, including wang
tiles [CSHD03,Wei04,LD05], lapped textures [PFH00], and
based on user input [LN03].

Most texture synthesis approaches compute the new tex-
ture off-line, and the synthesized texture is then used at run
time like a conventional texture. However, the resulting tex-
ture can be large and redundant, as it is obtained by inte-
grating a large number of similar patches. Texture bombing–
the idea of saving memory by reusing a few texture patches
placed at random locations–was pioneered over thirty years
ago [SA79]. The advent of programmable graphics hardware
brought renewed interest in the approach [Gla04, LHN05].
Our method takes the texture bombing approach.

In summary, the goal of our work is the development

of a texture synthesis method for real time rendering that
achieves good diversity of the output texture without requir-
ing considerable texture memory resources. Whereas we can
and do rely on prior art methods for patch extraction and ar-
rangement, reaching our goal requires innovation beyond the
prior art as follows:

1. Powerful color, 2-D shape, and 3-D shape patch di-
versification integrated with the texture bombing approach.
Whereas in prior diversification methods the diversified tex-
ture patches were actually converted to texture maps as a pre-
process, in our case diversification has to be efficient such
that it can be performed just-in-time during texture mapping.

2. An LoD algorithm for texture bombing that supports ar-
bitrary minification. Since texture bombing renders directly
from patches, mipmapping [Wil83] cannot be used across
patches. The lack of an appropriate LoD scheme for texture
bombing is a fundamental limitation that precludes its use.

A direct comparison between our method and each of the
many relevant prior art techniques is beyond the scope of
this paper. We limit the discussion to two recent and highly
visible techniques: discrete element textures [MWT11] and
structured image hybrids [RHDG10]. Like our method, dis-
crete element textures model texture patches using a mix
of geometry and image data. However, the geometry of a
discrete element is a simplified 3-D triangle mesh, which is
rendered by rendering each of its triangles, and which does
not support real time LoD adaptation from 3-D to 2-D or
across patches. On the other hand, the umbrella we propose
is designed to capture 2-D and 3-D detail, while serving as a
new rendering primitive. The entire umbrella is rendered di-
rectly with specialized rasterization and shadow algorithms,
and it supports real-time LoD adaptation from 3-D to 2-D
and across patches. Moreover, the umbrella supports drastic
shape and color changes at run time, allowing for example
one type of leaf to morph into a completely different type
of leaf. Finally, the discrete element work focuses on the ar-
rangement of 3-D patches based on a neighborhood similar-
ity metric and on energy optimization, which is complemen-
tary to our work.

The structured image hybrids synthesis technique
[RHDG10] extends appearance-space jitter [LH05] to pre-
serve structure. The technique is pixel-based, it is fully auto-

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

matic, and it generates very convincing hybrids from only a
small set of input exemplars. The method is not suitable for
the context of texture-bombing as the hybrids cannot be gen-
erated on the fly. Moreover, the method achieves excellent
fine grain diversification of appearance, but it is ill-suited
for interpolating between exemplars with greatly different
color. By comparison, our method targets simple patches,
whose structure is well captured and preserved by our um-
brella geometric structure, and whose color and shape can
be varied quickly and automatically by manipulating a very
small number of parameters on the fly, as needed for texture
bombing.

Our method saves texture memory by taking the texture
bombing approach. Texture memory can also be saved by
compression at texel level. The main approaches are based
on block partitioning [KE02, SR06], on vector quantization
[BAC96, TF08], and on wavelets [BIP00, DCH05, STC09].
All of these techniques allow looking up the compressed tex-
ture directly (e.g. [DCH05]). Compared to texture compres-
sion, our method achieves compact storage while avoiding
compression artifacts: powerful diversification allows cre-
ating a large texture from only a small number of input
patches, which are stored uncompressed.

Several procedural geometric modeling methods target fo-
liage specifically. The methods rely on L-Systems [RSL∗02,
PTMG08], on probabilistic [DGAG06] algorithms, on di-
versification of low-count polygonal models [MGGA10],
and/or on particle systems [RCS04] to simulate ecosystems
and autumn scenery. Compared to these methods, our tech-
nique achieves diversification based on examples and not
based on rules, and our technique generates a texture defined
compactly in a 2-D domain as opposed to a 3-D geometric
model which needs to be processed in its expanded form.
Structural layering [ACo12] is a recent approach for generat-
ing a large number of texture patches from a small number of
input examples, demonstrated in the context of leaves. The
texture patch is decomposed into layers, i.e. veins, spots, and
background, and layers are diversified individually. Com-
pared to our method, structural layering achieves finer grain
diversification, e.g. leaves with different spot patterns. The
diversification achieved by our method has the advantages
of greater 2-D shape variation (i.e. polygon morphing ver-
sus coarse 2-D warping), of supporting 3-D shape variation,
and of computation efficiency that enables the just-in-time
approach. Moreover, our method can be be used with many
types of textures and appears to be more general than struc-
tural layering which has only been demonstrated in the con-
text of leaves.

Finally, our method captures surface 3-D detail. Previous
techniques for modeling and rendering surface 3-D detail
include bump mapping [Bli78], horizon mapping [Max88,
SC00, HDKS00], displacement mapping [Coo84, KS01],
view dependent displacement mapping [WWT∗03], parallax
mapping [KTI∗01], and relief texture mapping [POC05]. In

Figure 5: Base umbrellas (left) and 3-D shape modif. (right).

texture synthesis, solid texturing approaches [DHR12] re-
place the 2-D texture patch with a 3-D particle. Compared
to these techniques, our method trades 3-D modeling fi-
delity for rendering efficiency by mapping an umbrella patch
to an ellipsoid, which can be rendered efficiently on the
GPU [Gum03]. Moreover, we only render 3-D detail where
needed with a smooth transition to 2-D.

3. Just-in-time texture synthesis overview

The texture is synthesized off-line in four major steps (Fig-
ure 4). First, a small number of base umbrellas (e.g. 4 in
Figure 1) are constructed from input images and shapes con-
taining the desired texture elements. Second, the base um-
brellas are diversified to hundreds of unique modified um-
brellas by varying color, 2-D shape, and 3-D shape parame-
ters. Third, the modified umbrellas are arranged in the 2-D
texture domain. Umbrella construction, diversification, and
arrangement are described in Section 4. Fourth, the umbrel-
las and the arrangement map are fed into an algorithm that
computes the LoDs needed to accommodate any minifica-
tion level (Section 5). The umbrellas, the arrangement map,
and the LoDs are then used at run-time to texture surfaces as
needed for the current output image (Section 6).

4. Umbrella Texture Patches

We define an umbrella as a texture-mapped 2-D geometric
primitive with a central vertex C and peripheral vertices Vi
(Figure 5, left). The umbrella need not be convex, but all
segments ViC have to be inside the umbrella. The texture of
the base umbrella is derived from input images that contain
the desired texture elements. We construct base umbrellas
with an interactive editor. The center is chosen at a natural
feature convergence point (e.g. for leafs), or as the center of
mass of peripheral vertices (e.g. for berries). A base umbrella
is created in seconds. Only a few umbrellas are needed (e.g.
4-10), which are then diversified automatically.

In order to modify the color of a base umbrella, its vertices
are assigned colors that are used to modulate the texture of
the umbrella. The color cp at a point P inside the umbrella is
computed as follows:

cp = ct + f cv

cv = ∑dici/∑di
(1)

where ct is the color looked up in the base umbrella texture

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

Figure 6: Umbrella color diversification.

Figure 7: 2-D shape diversification by morphing.

and cv is a weighted average of the vertex colors ci. A weight
di is defined as an inverse of the distance between vertex i
and P, which achieves a mean-value interpolation [Mic03].
The coefficient f controls how much the original texture col-
ors are modified, and can assume negative values (we use
random values in the (-1, 1) interval). We set the vertex col-
ors using additional reference images of similar texture ele-
ments. In Figure 6, a leaf with different colors (left) is used
to set the base umbrella vertex colors (middle) to generate a
realistic leaf new leaf (right).

The 2-D shape of a base umbrella is modified by mov-
ing peripheral vertices. In Figure 7 the base umbrella has
collinear peripheral vertices (blue) which allow creating sig-
nificantly different leaf shapes. The destination vertex posi-
tions can be designed by the user, or can be derived from
the shapes of other leaves. We support modeling and diver-
sification of 3-D surface detail by associating an umbrella to
a semi-ellipsoid (Figure 5, right). The semi-ellipsoid height
is a parameter set during 3-D shape diversification and then
tapered by the LoD algorithm as needed for a smooth tran-
sition from 3-D to 2-D. The ellipsoid provides a good trade-
off between modeling power and rendering cost. The semi-
ellipsoid modulates the 3-D shape of the umbrella during
texture mapping as described in Section 6.1.

The texture is synthesized by arranging modified umbrel-
las in the 2-D texture domain. We exemplify our just-in-time
texturing method using an overlapping arrangement defined
with a regular grid. Modified umbrellas are assigned to grid
cells. A grid cell is assigned all umbrellas that intersect it
(Figure 8). The umbrellas are stored in back to front order.
For the examples shown in this paper the base umbrella color
and shape diversification parameter values, as well as the lo-
cation, rotation, and scale of the modified umbrellas are cho-
sen randomly.

Figure 8: Top and side views of grid cell umbrellas.

5. Level of detail pre-processing

Level-of-detail adaption is needed in order to address the fol-
lowing concerns:

- First, expensive 3-D detail should only be rendered
where it matters, i.e. close to the eye. This requires switching
gradually from 3-D detail to a flat (2-D) surface.

- Second, when umbrellas have a small image footprint,
mipmapping individual umbrella textures is not sufficient
to avoid minification artifacts, and umbrellas have to be
merged. Whereas traditional texture synthesis methods ac-
tually compute a large texture and individual patches are
merged implicitly through mipmapping, just-in-time texture
synthesis requires merging umbrellas explicitly to compute
coarser LoDs of the arrangement grid.

- Third, a high-quality stable texturing method requires a
continuous adaption of the level of detail, with smooth tran-
sitions from one LoD to the next. In the case of mipmap-
ping this is achieved using trilinear interpolation. We are us-
ing two approaches for continuous transition between one
LoD and the next. The first approach looks up each LoD and
blends the resulting two colors, similar to conventional trilin-
ear interpolation. The second method increases texture clar-
ity by relying on a precomputed geometric morph between
the umbrellas of the finer LoD to the merged umbrellas of
the coarser LoD.

Figure 9 illustrates how, at the highest level of detail, the
synthesized texture is rendered with full 3-D detail, then the
height of the 3-D detail is tapered off gradually, and then
coarser and coarser LoDs of the arrangement grid are used.
Whereas tapering off 3-D detail can be done at run-time, the
coarser LoDs of the arrangement grid (Section 5.1) and the

Figure 9: Just-in-time texture synthesis LoD continuum.

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

morphs between them (Section 5.2) have to be pre-computed
off-line, akin to pre-computing the mipmap levels of a con-
ventional texture.

5.1. Arrangement map LoDs

We pre-compute coarser levels of detail of the arrangement
grid hierarchically from the bottom up. Consider a grid with
at most k modified umbrellas per grid cell. The next coarser
level is computed by merging 4 neighboring cells into 1 cell
with k umbrellas using Algorithm 1.

Algorithm 1 Arrangement map LoD computation.
Group up to 4k umbrellas into k clusters
for each cluster Ci do

Compute center oi of Ci
Compute convex hull hi of Ci
Simplify hi to si
Create new umbrella {oi,si}
Compute new umbrella vertex colors

end for

The up to 4k umbrellas are grouped into k clusters by run-
ning the k-means algorithm on the umbrella centers. In Fig-
ure 10 each of the 4 cells (left, white squares) contains up to
k=8 umbrellas (leaves delimited by blue lines), also counting
umbrellas that only partially overlap with a cell. The cells
are merged into a single cell (right, white square) with k=8
new umbrellas (red lines). A new umbrella is constructed for
each cluster. The center oi of the new umbrella is set as the
center of mass of the centers of the umbrellas in the cluster.
The peripheral vertices si of the new umbrella are derived
from the convex hull hi of the cluster. hi is simplified to stop
the proliferation of vertices as the algorithm is run hierarchi-
cally. A maximum number of peripheral vertices is enforced
by removing vertices with edge angles closest to 180◦.

Once the shape of the new umbrella is known, its color
is defined by computing colors for each of its vertices. New
umbrellas are not texture mapped, thus they do not incur a
significant additional storage cost. Figure 10 right shows the
vertex colors for the new umbrellas. The color of a vertex
is computed as a weighted sum of the color samples in the
neighborhood of the vertex and inside the new umbrella. We
use a raised cosine reconstruction filter with a base of half
the distance from the vertex to the umbrella center. For the
center, the base is half the distance to the peripheral vertices.

Our LoD algorithm essentially implements mipmapping
directly in the grid of umbrellas. Just like in conventional
mipmapping, LoDs are pre-computed off-line to avoid the
performance penalty of on-the-fly LoD adaptation. The al-
gorithm is designed such that it can be applied recursively,
which requires that complexity does not increase (i.e. ac-
cumulate) from one level to the next. The coarser level of
detail has the same per cell complexity as the finer level
from which it is computed: a grid cell in the coarser level
stores umbrellas (and not more complex polygonal represen-

Figure 10: Arrangement grid LoD. Four neighboring grid
cells (left) are merged into one (right).

Figure 11: Comparison between minification with our LoD
algorithm (left) and with mipmapping (right).

tations), and the number of umbrellas and the number of ver-
tices per umbrella are still bound by the same global upper
limits. To achieve this, the algorithm resorts to two main ap-
proximations. First, the cluster of umbrellas is approximated
with its convex hull. Second, the color information stored
in the textures of the umbrellas is approximated using vertex
colors. These approximations work well since the output im-
age footprint of the umbrellas is small and since the colors of
merged umbrella vertices are computed from samples, which
could include background samples. Figure 11 (left) shows
the output of our algorithm for the case shown in Figure 10.
The output image footprint of the merged cell is 8×8 pixels,
shown here magnified for illustration purposes. The top row
shows a nearest neighbor magnification and the bottom row a
bilinear magnification. The result is comparable to mipmap-
ping the corresponding high resolution texture (right). Like
all texture bombing approaches, our method has to antialias
the edges of the umbrellas, which we achieve with little per-

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

Figure 12: LoD morphing for a group of umbrellas.

Figure 13: LoD morph: initial(left), intermediate(middle),
and final stage(right).

formance penalty by computing multiple color samples per
output pixel.

5.2. LoD morphing

As discussed, an abrupt transition from one arrangement
LoD to the next is not acceptable. A simple solution for
switching gradually from one LoD to the next is to lookup
both LoDs and to blend with weights determined by the frac-
tional value of the actual LoD needed. For textures where the
difference between the two colors looked up in consecutive
LoDs is considerable, texture clarity can be improved by a
more complex transition between LoDs.

What is needed is a gradual transition of the geometry
of the umbrellas to the geometry of the merged umbrel-
las. For this, we pre-compute a morph between each group
of umbrellas and their corresponding merged umbrella. The
morph moves the vertices of the umbrellas gradually to de-
fine a shape that closely approximates the convex hull. In
Figure 12, a group of 4 umbrellas (black lines) is merged
to its convex hull (red lines). The morph moves the vertices
(blue) that are not inside an umbrella and that are not on the
convex hull, radially away from the centers of their respec-
tive umbrellas until they touch an umbrella boundary or the
convex hull. Vertex V has reached its final destination on the
convex hull. Figure 13 illustrates LoD morphing for several
groups, from the initial, to an intermediate, and then to the
final configuration. The blue lines delimiting the umbrellas
are shown for illustration purposes. Also see the accompa-
nying video segment LoDMorphing.mov.

6. Just-in-time texture mapping

The umbrellas, the arrangement map, and the arrangement
map LoD are used at runtime to texture the polygons on
which the synthesized texture is mapped. Section 6.1 gives
the high level algorithm for just-in-time texture mapping a
polygon. If 3-D detail has to be rendered, the intersection
between the ray of the current pixel and the closest umbrella
ellipsoid is found as described in Section 6.2. Finally, the fi-
nal color is looked up in the 2-D umbrella as described in
Section 6.3.

6.1. Just-in-time texture mapping algorithm

The synthesized texture is encoded using a 1-D array of base
umbrellas, a 1-D array of modified umbrellas, and a hierar-
chy of 2-D arrays for the arrangement grid. A base umbrella
is encoded with a texture map and with the texture coordi-
nates of its vertices. A modified umbrella is encoded with
the index of its base umbrella, with per vertex color and po-
sition, and, if 3-D shape is desired, with parameters defining
the underlying ellipsoid. The arrangement grid stores an ar-
ray of modified umbrella indices for each cell. This encoding
is used to texture surfaces as required by the output frame.

Consider a polygon to be textured with our technique. In
order to render the 3-D detail with the correct silhouette, the
polygon is extruded to form a prism with height h, where h is
the maximum height of the 3-D detail. Figure 8 (right) shows
the 3-D nature of the texture and the need to extrude the
base polygon in order to ensure that all pixels that need to be
textured are touched. In other words, not all pixels needing
to show 3-D detail are covered by the base polygon. This is
common practice for techniques that render 3-D detail on the
GPU (e.g. relief texture mapping). Each pixel touched by the
prism is textured using Algorithm 2.

Algorithm 2 Per-pixel just-in-time texturing.
P0P1 = pixel ray intersected with prism
cell = GetCell(P0)
while cell do

Set3DLoD(cell)
if cell is 3-D AND Intersect3D(cell, P0P1) then

return 3-D sample
end if
if cell is 2-D then

return LookUp2D(P1)
end if
cell = NextCell(cell, P0P1)

end while
return no-sample

The ray at the current pixel is first intersected with the
prism to find the ray segment P0P1 (Figure 14). Then P0P1 is
traced through the grid of cells extruded to height h, starting
from the grid cell that contains the starting point P0.

The first step in processing a cell is to set the amount of

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

Figure 14: Intersection between ray and grid cells (c0 −
c6). The red line shows the height of the 3-D detail tapering
off over cells c2 − c4. The green line shows the virtual ray
modification that implements the tapering of 3-D detail.

3-D detail that has to be rendered according to the desired
3-D to 2-D LoD adaptation. In Figure 14, the ray traverses
cells c0 to c6. Cells c0 and c1 have full-height 3-D detail, the
height of the 3-D detail is tapered off over cells c2 - c4, and
then cells c5 and c6 have no 3-D detail (see red line).

A cell with 3-D detail is intersected with the ray as de-
scribed in Section 6.2 (Algorithm 3). If an intersection is
found, the traversal stops and the sample is returned. Other-
wise the algorithm continues with the next cell traversed by
the ray. The traversal terminates the first time a 2-D cell is
encountered, i.e. a cell where the 3-D detail has been tapered
off completely. The texture is looked up at the intersection
point between the ray and the base polygon and the sam-
ple is returned. The lookup algorithm is given in Section 6.3
(Algorithm 4). In our example the texture is looked up at P1
when 2-D cell c4 is processed.

6.2. 3-D texture lookup

A grid cell with 3-D detail (cell) is intersected with a ray
(P0P1) according to Algorithm 3. The ray P0P1 is first clipped
with the axis aligned bounding box of the cell, obtaining
R0R1. The ray segment R0R1 is then modified to account for
the possible reduction in height of the 3-D detail. Modifying
the ray and intersecting the uncompressed cell with the mod-
ified ray is easier than compressing the cell and intersecting
it with the original ray. In Figure 14 the ray is not modified
for cells c0 and c1 which are rendered with full-height 3-D
detail, but ray segment ab is modified for cell c2 to ab′, by
moving b to b′. b′ is found such that b′b0 / h = bb0 / b1b0.
The resulting ray ab′ has the same endpoints with respect
to the uncompressed cell as the original ray segment ab with
respect to the compressed cell. ab′ is intersected with the un-
compressed cell. Similarly, bd is modified to b′d′, maintain-
ing ray continuity from cell c2 to cell c3 (green line ab′d′).
For cell c4 de is above the compressed cell thus no intersec-
tion needs to be computed (dotted green line).

The cell is intersected with the modified ray by intersect-
ing each umbrella in the cell, and by recording the closest in-
tersection. An umbrella is intersected by first intersecting the
ellipsoid defining its 3-D shape. The ellipsoid intersection

Algorithm 3 Intersection of pixel ray with 3-D cell.
R0R1 = ClipRayWithCellBoundingBox(P0P1, cell)
Q0Q1 = ModifyRay(R0R1, cell)
S = no-sample
for all modified umbrellas u in cell do

if (Q = Intersect(Q0Q1, u.ellipsoid)) != 0 then
if (Si = LookUp(Q, u.2Dpolygon)) != 0 then
S = ClosestToEye(S, Si);

end for
return S

implies solving a quadratic. Once the intersection is found,
the (x,y) coordinates of the intersection (where the x and the
y axes define the umbrella plane), define a 2-D point where
the umbrella is looked up, as described in Section 6.3.

6.3. 2-D texture lookup

Given point P on the base polygon with texture coordinates
(s, t), the color at P is looked up with Algorithm 4. Since
the grid is uniform, the cell containing P is found directly
by dividing s and t by the width and height of the cell. The
modified umbrellas in the cell are traversed in front to back
order in search of an intersection. The base umbrella sector
possibly containing P is found using the angle ϕ between the
vector defined by P and the horizontal axis (Figure 15, left).
If P is actually inside the triangle sector, an intersection has
been found and a color is returned. The color is computed
by blending the base umbrella texture color with the interpo-
lated color of the triangle sector (found using Equation 1). If
no umbrella covers P, the background color is returned.
Algorithm 4 2-D texture lookup at point P.

Find grid cell that contains P
for all modified umbrellas u in cell do

Compute angle ϕ of P with the horizontal axis
Use ϕ to find sector triangle Tj containing P
if P outside peripheral edge e j then continue
Compute barycentric coordinates (α , β , γ) of P in Tj
Lookup base umbrella texture color ct at (α , β , γ)
Compute interpolated vertex color cv
return blended final color ct+ f cv

end for
return background color

The level of detail is adapted by examining the derivatives
of the texture coordinates in arrangement grid units. While
these derivatives are sufficiently small (i.e. 0.125), the LoD
is simply adapted by looking up the base umbrella textures
with mipmapping. Once the derivatives become too large,
the coarser LoDs of the arrangement grid will be used. The
lookup algorithm is run on the two LoDs that bracket the
desired LoD, and a linear interpolation provides a smooth
transition between LoDs (Figure 2 and video).

We enhance the appearance of the texture (Figure 15,

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

right) by approximating shadows with a small addition to
Algorithm 4. As the umbrellas of the cell are traversed we
also test whether the lookup point is in the shadow cast by
the current umbrella. This is done by moving the point to-
wards the light on the texture plane, and by testing whether
the displaced point is inside the umbrella, which would in-
dicate that the original point is in the umbrella’s shadow. In
Figure 15, left, P1 is translated along the light vector l to P′

1
which is inside the umbrella thus P1 is in shadow.

So far we have discussed our LoD scheme designed to
support arbitrary minification, a challenging and serious
problem that previous texture bombing techniques ignore.
Regarding magnification, i.e. the case when texture resolu-
tion is exceeded by output image resolution, our technique,
like any bombing technique, outperforms conventional tex-
turing as the edges of the umbrellas remain thin no matter
what the magnification factor.

7. Results and Discussion

We have applied our technique to generate and use several
textures: Fall leaves (Figure 1), Berries (Figure 16, row 1),
Green leaves (row 2), Pepper (row 3), and Flowers (row 4).
The textures Fall leaves, Berries, and Green leaves encode
surface 3-D detail, whereas the other two do not. The resolu-
tion of the base umbrella textures is 256×256, which allows
zooming in with good detail. Our LoD algorithm provides
quality results even at extreme minification rates. As illus-
trated in the video, our technique is stable which preserves
quality in sequences of frames.

7.1. Storage Reduction Performance

In order to quantify the texture memory savings brought by
our just-in-time texture encoding, let′s assume that there are
b base umbrellas, each with v vertices and with a texture of
resolution w× h. The storage cost of a base umbrella is wh
+ 2v four-byte words, where we counted 2 floats per vertex
for the texture coordinates. Let n be the number of modified
umbrellas. The cost of a modified umbrella is 1 + 3v + 3
+ 1 words, which accounts for the base umbrella index, for
the positions and colors of the vertices, for the 3 parameters

Figure 15: Umbrella 2-D lookup with shadowing (left), and
comparison between texture w/ and w/o shadows (right).

Figure 16: Additional texture synthesis examples and corre-
sponding base umbrellas.

defining the ellipsoid, and for the height of the umbrella, re-
spectively. Each grid cell records the modified umbrellas it
stores with integer indices. Thus, for a W ×H grid with at
most k modified umbrellas per cell, the overall cost in four-
byte words J of our just-in-time texture encoding is:

J = bwh+2bv+n(3v+5)+ kWH (2)

In order to compare this cost to that of a conventional
approach storing the synthesized texture explicitly, first we
have to determine the resolution of the synthesized texture.
Since modified umbrellas have different sizes, the resolution
of the texture has to be determined by examining the res-
olution at individual modified umbrellas. A modified um-

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

brella Ui with an arrangement grid axis aligned bounding
box of xi × yi implies a synthesized texture resolution of
w/xi × h/yi ×W ×H. The dimensions xi and yi are mea-
sured in grid cell units. Thus, in order to not lose informa-
tion at any of the modified umbrellas, the synthesized texture
should have a resolution T of:

T = max(w/xi)×max(h/yi)×W ×H (3)

where the maxima are computed over all modified umbrel-
las. Using min instead of max in the equation above corre-
sponds to a synthesized texture that loses color resolution
at all modified umbrellas but the one with the largest ar-
rangement grid footprint. A third option is to use the av-
erage resolution over all modified umbrellas. Table 1 gives
the storage reduction factors achieved by our method versus
conventional texture synthesis, for each of these 3 options.
Just-in-time texture synthesis achieves lossless storage re-
duction with substantial factors. Base umbrella texture reso-
lution w×h is 256×256, arrangement grid resolution W ×H
is 64×24 (10×13 for Flowers), and the values for the other
texture synthesis parameters are given in the table.

7.2. Rendering Performance

Just-in-time texture synthesis achieves storage savings by
shifting texture expansion from pre-processing to run-time,
a classic trade-off between storage and computation cost.
Since conventional texture mapping does not support ren-
dering surface 3-D detail, we first analyze the performance
of just-in-time texture synthesis without surface 3-D detail.

Instead of a single mipmapped lookup, the fragment pro-
gram has to compute the intersection between the sampling
location and the modified umbrellas at the current grid cell.
As such, the rendering cost depends on two main factors:
the number of modified umbrellas per grid cell k and the
complexity of the umbrellas v. Figure 17 shows the variation
of the rendering performance with k and v for Fall leaves.
The output image resolution is 512×512, W ×H = 32×32,
and w× h = 256× 256. Rendering was done by computing
4 color samples per output image pixel, in order to antialias
umbrella edges. Performance was measured on an Intel Core
i7-2600 3.40GHz PC with an NVIDIA GeForce GTX 580,
1,280 MB graphics card.

Rendering 3-D detail adds the cost of intersecting a pixel
ray with the cells it traverses, until an intersection is found
or until the 3-D detail tapers off. Since the height of the 3-D
detail is small compared to the size of the base polygon, and
since typical rays are not grazing the base polygon, the num-
ber of cells considered for 3-D intersection is typically small.
For a texture like the one shown in Figure 2 most pixels are
computed without 3-D intersection, and, for the pixels where
3-D detail is rendered, the median and maximum number of
cells considered for 3-D intersection is 3 and 6, respectively.

Table 1: Storage reduction performance

Texture b v k
n

Min Avg Max(×1,000)
Fall L. 9 63 19 6.1 16:1 25:1 47:1
Berries 3 58 16 14 10:1 23:1 48:1

Green L. 6 51 68 25 5:1 13 :1 53 :1
Peppers 4 35 37 14 21:1 32:1 56:1
Flowers 6 74 12 .39 5:1 10:1 18:1

Figure 17: Rendering performance variation with k (top, v
= 76), and v (bottom, k = 13) for Fall leaves.

All umbrellas have their 3-D shape modeled with an ellip-
soid thus the intersection cost only depends on the number
of umbrellas k (Figure 17, top).

7.3. Limitations

Even though the umbrella is a versatile geometry and color
representation, which models well many discrete texture el-
ements, not all discrete textures can be modeled efficiently
with umbrellas (e.g. grass blades). Another limitation is that
the LoD hierarchy is built using the convex hull, which ex-
aggerates the size of the merged umbrella. The convex hull
is computed easily, it can be easily transformed into an um-
brella, and it works well in practice (Figure 11).The approx-
imation error is more noticeable in the case of sparse um-
brellas, Figure 18. In the case of umbrellas with great color
variation, the color information culling from one level of the
LoD hierarchy to the next could be too aggressive–there is a
single color sample inside the convex hull. Our LoD scheme
first tapers off 3-D detail completely before 2-D shape and
color resolution is reduced. This works well for typical um-
brellas which have a far greater x-y than z extent, like the ex-
amples shown in the paper. However, to support thick layers

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

Figure 18: Illustration of convex hull approximation limita-
tion. Three umbrellas (top left) are minified to an 8x8 screen
region with our method (top middle) and through bi-cubic
down-sampling (top right), which provides down truth for
comparison.Our method overestimates The top middle and
top right images are also shown bi-cubically upsampled to
512x512 resolution for illustration purposes. Our method
based on the convex hull overestimates the footprint of the
merged umbrellas, which is noticeable in the case of sparse
umbrellas over a contrasting background, as shown in this
example.

of tiny umbrellas, the LoD scheme should allow for simul-
taneous 3-D and 2-D detail adjustment. Finally, rendering
performance of just-in-time texture synthesis is lower than
for conventional texture mapping and it decreases with the
overlap factor.

Our custom rasterization of umbrellas precludes the use
of standard hardware antialiasing and requires implement-
ing multi-sampling explicitly. However, graphics hardware
is now sufficiently powerful such that multi-sampling can be
practical even for the most demanding interactive applica-
tions. The performance penalty brought by multi-sampling is
shown in Figure 17, bottom. Finally, our present implemen-
tation does not support anisotropic filtering, which is needed
to avoid excessive blurriness when minification is strongly
direction dependent in the texture plane.

8. Conclusions and Future Work

We have presented a novel texture synthesis approach that
models texture patches with parameterizable color, 2-D, and
3-D shape. A few input patches are sufficient to mimic
the diversity present in nature. Other texture diversifica-
tion techniques can be plugged into our pipeline. Texel data
is computed just-in-time, which brings substantial storage
savings. An LoD algorithm only renders 3-D detail where

needed, and supports artifact-free continuous minification at
any level. The LoD algorithm solves a fundamental prob-
lem in texture bombing–texture bombing without adapting
detail across patches results in severe artifacts that make the
approach unusable.

One possible direction of future work is to alleviate some
of the limitations discussed above. The 2-D shape and color
modeling power of umbrellas can be further increased by in-
troducing additional vertices on the radii connecting the cen-
ter to the peripheral vertices. This would allow for greater
color diversification and LoD adaptation flexibility. Color
modeling power could also be increased by resorting to more
sophisticated interpolation schemes, such as those developed
in the context of image and video processing for propagating
user edits [AP08, XLJ∗09]. The LoD shape fidelity could be
improved by not requiring that the merged umbrella be con-
vex, but rather by shrink wrapping it to the actual perime-
ter of the umbrellas in the cluster it replaces. This could be
done by starting from the convex hull and by pulling in (i.e.
towards the center) peripheral vertices that map over back-
ground. Anisotropic filtering could be supported in the future
with a RIP map approach that precomputes umbrella LoDs
on non-uniformly scaled versions of the arrangement grid, or
by approximating the pixel footprint in texture space at run
time with multiple lookups, a more costly but more accurate
solution.

Our method has the merit of placing 3-D and 2-D surface
detail on a continuum, which allows switching gradually and
automatically from 3-D to 2-D. Compared to an approach
that renders 3-D triangles, our approach bypasses the diffi-
cult task of 3-D level of detail adaptation through simplifica-
tion. Our method is general and supports any representation
of 3-D detail. For example the 3-D modeling power of our
technique could be increased by using a more powerful 3-D
representation such as a height field, which only requires re-
placing the ray/ellipsoid intersection with a ray/height field
intersection.

Our paper focuses on the texture synthesis sub-problems
of diversification and LoD adaptation. Another possible di-
rection of future work is to integrate our method with prior
solutions for automatic extraction of texture elements and of
arrangement patterns, and for distortion-free tiling on 2-D
and 3-D domains. Just-in-time texture synthesis takes ad-
vantage of the programmability sophistication of graphics
hardware by replacing the texel with a higher-level texturing
primitive. Our method brings benefits whose importance will
only grow as increases in computation performance continue
to outpace increases in storage and bandwidth.

Acknowledgment

We would like to thank Qijiang Jin for help with the imple-
mentation. This work is the part of Project 61272349 sup-
ported by National Natural Science Foundation of China and

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Lili Wang et al. / Just-in-Time Texture Synthesis

Project 043/2009/A2 funded by Macao Science and Tech-
nology Development Fund, and is also supported by Beijing
Science Technology Star Plans and Technology Star Plans
(No. 2009B09).

References

[ACo12] ASSA J., COHEN-OR D.: More of the same: Synthesiz-
ing a variety by structural layering. Computers and Graphics 36,
4 (2012), 250–256.

[AP08] AN X., PELLACINI F.: Mean value coordinates. ACM
Transactions on Graphics 27, 3 (2008).

[BAC96] BEERS A., AGRAWALA M., CHADDHA N.: Rendering
from compressed textures. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques
(New Orleans, LA, USA, 1996), ACM Press, pp. 373–378.

[BIP00] BAJAJ C., IHM I., PARK S. H.: Compression-based 3D
texture mapping for real-time rendering. Graphical Models 62, 6
(2000), 391–410.

[Bli78] BLINN J.: Simulation of wrinkled surface. In Proceed-
ings of the 5th annual conference on Computer Graphics and In-
teractive Techniques (Atlanta,Georgia,USA, 1978), ACM Press,
pp. 286–292.

[Coo84] COOK R.: Shade trees. In Proceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques (Minneapolis, USA, 1984), ACM Press, pp. 223–231.

[CSHD03] COHEN M. F., SHADE J., HILLER S., DEUSSEN O.:
Wang tiles for image and texture generation. ACM Transactions
on Graphics 22, 3 (2003), 287–295. SIGGRAPH 2003.

[DCH05] DIVERDI S., CANDUSSI N., HOLLERER T.: Real-time
rendering with wavelet-compressed multi-dimensional textures
on the GPU. Computer Science Technical Report 2005-05, 2005.

[DGAG06] DESBENOIT B., GALIN E., AKKOUCHE S., GROS-
JEAN J.: Modeling autumn sceneries. In Eurographics(EG) short
paper (2006).

[DHR12] DU S., HU S., R.R. M.: Semi-regular solid textur-
ing from 2d exemplars. IEEE Transactions on Visualization and
Computer Graphics (2012).

[DLC05] DONG F., LIN H., CLAPWORTHY G.: Cutting and past-
ing irregularly shaped patches for texture synthesis. Computer
Graphics Forum 24, 1 (2005), 17–26.

[DMLG02] DISCHLER J. M., MARITAUD K., LEVY B., GHAZ-
ANFARPOUR D.: Texture particles. Computer Graphics Forum
21, 3 (Sept. 2002), 401–410.

[DZ06] DISCHLER J. M., ZARA F.: Real-time structured texture
synthesis and editing using image-mesh analogies. The Visual
Computer 22, 9 (2006), 926–935.

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques
(Los Angeles, California, USA, 2001), ACM Press, pp. 341–346.

[Gla04] GLANVILLE S.: Texture bombing. In GPU Gems chap-
ter 20 (2004), Nvidia Corporation. http://http.developer.
nvidia.com/GPUGems/gpugems_ch20.html.

[Gum03] GUMHOLD S.: Splatting illuminated ellipsoids with
depth correction. In Proceeding of the 8th International Fall
Workshop on Vision, Modelling and Visualization (Munich, Ger-
many, 2003), Aka GmbH, pp. 245–252.

[HDKS00] HEIDRICH W., DAUBERT K., KAUTZ J., SEIDEL

H.: Illumination micro geometry based on precomputed visibil-
ity. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques (New Orleans, Louisiana,
USA, 2000), ACM Press/Addison-Wesley Publishing Corpora-
tion, pp. 455–464.

[HQXT05] HUANG J., QI D., XIONG C., TANG Z.: Foreground-
distortion method for image synthesis. In Proceedings of the 9th
International Conference on Computer Aided Design and Com-
puter Graphics (Hong Kong, China, 2005), IEEE, pp. 509–513.

[IMIM08] IJIRI T., MECH R., IGARASHI T., MILLEI G.: An
example-based procedural system for element arrangement.
Computer Graphics Forum 27, 2 (2008), 429–436.

[KCoDL06] KOPF J., COHEN-OR D., DEUSSEN O., LISCHIN-
SKI D.: Recursive wang tiles for real-time blue noise. ACM
Transactions on Graphics 25, 3 (2006), 509–518. (Proceedings
of SIGGRAPH 2006).

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics Hardware (Saarbrucken, Germany, 2002), Eurograph-
ics Association Aire-la-Ville, pp. 7–15.

[KS01] KAUTZ J., SELDEL H.: Hardware accelerated displace-
ment mapping for image based rendering. In Proceedings of
Graphics Interface (Ottawa, Ontario, Canada, 2001), Canadian
Information Processing Society, pp. 61–70.

[KSE∗03] KWATRA V., SCHODL A., ESSA I., TURK G., BO-
BICK A.: Graphcut textures : Image and video synthesis using
graph cuts. ACM TOG 22, 3 (July 2003), 277–286.

[KTI∗01] KANEKO T., TAKAHEL T., INAMI M., KAWAKAMI
N., YANAGIDA Y., MAEDA T., TACHI S.: Detailed shape rep-
resentation with parallax mapping. In Proceeding of the 11th
International Conference on Artificial Reality and Telexistence
(Tokyo, Japan, 2001), Addison-Wesley, pp. 205–208.

[LD05] LAGAE A., DUTRE P.: A procedural object distribution
function. ACM Transactions on Graphics 24, 4 (2005), 1442–
1461.

[LH05] LEFEBVRE S., HOPPE H.: Parallel controllable texture
synthesis. ACM Transactions on Graphics 24, 3 (2005), 777–
786.

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space texture
synthesis. ACM Transactions on Graphics 25, 3 (July 2006),
541–548. (SIGGRAPH 2006).

[LHN05] LEFEBVER S., HORNUS S., NEYERT F.: Texture
sprites: Texture elements splatted on surfaces. In Proceedings
of the 2005 symposium on Interactive 3D graphics and games
(Washington, DC,USA, 2005), ACM Press, pp. 163–70.

[LLH04] LIU Y. X., LIN W. C., HAYS J. H.: Near-regular tex-
ture analysis and manipulation. ACM Transactions on Graphics
23, 3 (Aug. 2004), 368–376. (SIGGRAPH 2004).

[LLX∗01] LIANG L., LIU C., XU Y.-Q., GUO B., SHUM H.-
Y.: Real-time texture synthesis by patch-based sampling. ACM
Transactions on Graphics 20, 3 (July 2001), 127–150.

[LN03] LEFEBVRE S., NEYRET F.: Pattern based procedural tex-
tures. In ACM-SIGGRAPH Symposium on Interactive 3D Graph-
ics (Monterey, CA, USA, 2003), ACM Press, pp. 203–212.

[LP00] LEFEBVRE L., POULIN P.: Analysis and synthesis of
structural textures. In Proceeding of Graphics Interface (Mon-
treal,Canada, 2000), Canadian Human-Computer Communica-
tions Society, pp. 77–86.

[LTcL05] LIU Y., TSIN Y., CHIEH LIN W.: The promise and
perils of near-regular texture. International Journal of Computer
Vision- Special Issue on Texture Analysis and Synthesis 62, 1-2
(April-May 2005), 145–159.

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

http://http.developer.nvidia.com/GPUGems/gpugems_ch20.html

Lili Wang et al. / Just-in-Time Texture Synthesis

[Max88] MAX N.: Horizon mapping: Shadows for bump-mapped
surfaces. The Visual Computer 4, 2 (1988), 109–117.

[MGGA10] MARECHAL N., GALIN E., GUERIN E.,
AKKOUCHE S.: Component-based model synthesis for
low polygonal models. In Proceedings of Graphics Interface
2010 (Ottawa,Ontario,Canada, 2010), Canadian Information
Processing Society, pp. 217–224.

[Mic03] MICHAEL J.: Mean value coordinates. Computer Aided
Geometric Design 20, 1 (2003), 19–27.

[MWT11] MA C. Y., WEI L. Y., TONG X.: Discrete element
textures. ACM Transactions on Graphics 30, 4 (2011), 1–10. (
SIGGRAPH 2011).

[NMMK05] NICOLL A., MESETH J., MULLER G., KLEIN R.:
Fractional fourier texture masks: Guiding near-regular texture
synthesis. Computer Graphics Forum 24, 3 (Sept. 2005), 569–
579.

[Pea85] PEACHEY D.: Solid texturing of complex surfaces. Com-
puter Graphics Forum 19, 3 (1985), 17–26.

[Per85] PERLIN K.: An image synthesizer. In Proceedings of the
12th annual conference on Computer graphics and interactive
techniques (San Francisco, USA, 1985), ACM Press, pp. 287–
296.

[PFH00] PRAUN E., FINKELSTEIN A., HOPPE H.: Lapped tex-
tures. In Proceeding of the 27th annual conference on Computer
graphics and interactive techniques (New Orleans, Louisiana,
USA, 2000), ACM Press, pp. 465–470.

[POC05] POLICARPO F., OLIVEIRA M., COMBA J.: Real-time
relief mapping on arbitrary polygonal surfaces. In Proceedings
of the 2005 symposium on Interactive 3D graphics and games
(Washington, DC, USA, 2005), ACM Press, pp. 155–162.

[PTMG08] PEVRAT A., TERRAZ O., MERILLOU S., GALIN
E.: Generation vast varieties of realistic leaves with parametric
2gmaps l-systems. The Visual Computer 24, 7-9 (2008), 807–
816.

[RCS04] RODKAEW Y., CHONGSTITVATANA P., SIRIPANT S.:
Modeling plant leaves in marble-patterned colours with parti-
cle transportation system. In Proceedings of the 4th Interna-
tional Workshop on Functional-Structural Plant Models (Mont-
pellier,France, 2004), UMR AMAP, pp. 391–397.

[RHDG10] RISSER E., HAN C., DAHYOT R., GRINSPUN E.:
Synthesizing structured image hybrids. ACM Transactions on
Graphics 29, 4 (2010), 1–6.

[RSL∗02] RODKAEW Y., SIRIPANT S., LURSINSAP C.,
CHONGSTITVATANA P., FUJIMOTO T., N. C.: Modeling
leaf shapes using l-system and genetic algorithms. In Pro-
ceeding of NICOGRAPH International (Tokyo, Japan, 2002),
Addison-Wesley, pp. 73–88.

[SA79] SCHACHTER B., AHUJA N.: Random pattern generation
processes. Computer Graphics Forum 10, 2 (1979), 95–114.

[SC00] SLOAN P., COHEN M.: Interactive horizon mapping. In
Proceedings of the Eurographics Workshop on Rendering Tech-
niques (Brno, Czech Republic, 2000), Springer-Verlag Berlin,
pp. 281–286.

[SR06] STACHERA J., ROKITA P.: Gpu-based hierarchical tex-
ture decompression. In Eurographics short paper (Vienna, Aus-
tria, 2006), Eurographics Association, pp. 33–36.

[STC09] SUN C. H., TSAO Y. M., CHIEN S. Y.: High-quality
mipmapping texture compression with alpha maps for graphics
processing units. IEEE Transactions on Multimedia 11, 4 (2009),
589–599.

[TF08] TANG Y., FAN J.: Incremental texture compression for
real-time rendering. In Proceedings of the 4th International Sym-
posium on Advances in Visual Computing (ISVC ’08), Part II
(Las Vegas, Nevada, USA, 2008), Springer-Verlag New York,
pp. 1076–1085.

[TW08] TZENG S., WEI L.: Parallel white noise generation on
a gpu via cryptographic hash. In Proceeding of symposium on
Interactive 3D graphics and games (Redwood City, CA, USA,
2008), ACM Press, pp. 79–87.

[Wei04] WEI L.: Tile-based texture mapping on graphics hard-
ware. In Proceeding of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware (Grenoble, France, 2004),
Eurographics Association, pp. 55–63.

[Wil83] WILLIAMS L.: Pyramidal parametrics. In Proceedings
of the 10th annual conference on Computer graphics and inter-
active techniques (Detroit, Michigan, USA, 1983), ACM Press,
pp. 1–11.

[WLKT09] WEI L.-Y., LEFEBVRE S., KWATRA V., TURK G.:
State of the art in example-based texture synthesis. In Eurograph-
ics 2009, State of the Art Report, EG-STAR (Munich, Germany,
2009), Eurographics Association, pp. 1–25.

[WWT∗03] WANG L., WANG X., TONG X., LIN S., HU S.,
GUO B., SHUM H.: View-dependent displacement mapping.
ACM Transactions on Graphics 22, 3 (2003), 334–339.

[WY04] WU Q., YU Y. Z.: Feature matching and deformation
for texture synthesis. ACM Transactions on Graphics 23, 3 (Aug.
2004), 362–365.

[XLJ∗09] XU K., LI Y., JU T., HU S., LIU T.: Efficient affinity-
based edit propagation using k-d tree. ACM Transactions on
Graphics 28, 5 (2009).

[ZZV∗03] ZHANG J., ZHOU K., VELHO L., GUO B., SHUM H.:
Synthesis of progressively-variant textures on arbitrary surfaces.
ACM Transactions on Graphics 22, 3 (July 2003), 295–302. (
SIGGRAPH ’03).

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

